DGCNN: Disordered Graph Convolutional Neural Network Based on the Gaussian Mixture Model

نویسندگان

  • Bo Wu
  • Yang Liu
  • Bo Lang
  • Lei Huang
چکیده

Convolutional neural networks (CNNs) can be applied to graph similarity matching, in which case they are called graph CNNs. Graph CNNs are attracting increasing attention due to their effectiveness and efficiency. However, the existing convolution approaches focus only on regular data forms and require the transfer of the graph or key node neighborhoods of the graph into the same fixed form. During this transfer process, structural information of the graph can be lost, and some redundant information can be incorporated. To overcome this problem, we propose the disordered graph convolutional neural network (DGCNN) based on the mixed Gaussian model, which extends the CNN by adding a preprocessing layer called the disordered graph convolutional layer (DGCL). The DGCL uses a mixed Gaussian function to realize the mapping between the convolution kernel and the nodes in the neighborhood of the graph. The output of the DGCL is the input of the CNN. We further implement a backward-propagation optimization process of the convolutional layer by which we incorporate the feature-learning model of the irregular node neighborhood structure into the network. Thereafter, the optimization of the convolution kernel becomes part of the neural network learning process. The DGCNN can accept arbitrary scaled and disordered neighborhood graph structures as the receptive fields of CNNs, which reduces information loss during graph transformation. Finally, we perform experiments on multiple standard graph datasets. The results show that the proposed method outperforms the state-of-the-art methods in graph classification and retrieval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.03563  شماره 

صفحات  -

تاریخ انتشار 2017